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Abstract Adsorption technology regarded as an ideal method to remove water
contaminants has been widely applied in practical applications, as the merit of the
wide suitability and low cost. Among various adsorbents, magnetic recyclable
adsorbents have gained more and more attention in recent years, which not only
decrease the risk of secondary pollution but also realize the cyclic use of the

Y. Zhu · B. Mu · A. Wang (*)
Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material
and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,
Lanzhou, People’s Republic of China
e-mail: zhuyf@licp.cas.cn; mubin@licp.cas.cn; aqwang@licp.cas.cn

H. Yu
Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material
and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,
Lanzhou, People’s Republic of China

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy
of Sciences, Beijing, People’s Republic of China

© The Editor(s) (if applicable) and The Author(s), under exclusive licence to
Springer Nature Switzerland AG 2021
L. Meili, G. L. Dotto (eds.), Advanced Magnetic Adsorbents for Water Treatment,
Environmental Chemistry for a Sustainable World 61,
https://doi.org/10.1007/978-3-030-64092-7_13

385

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64092-7_13&domain=pdf
mailto:zhuyf@licp.cas.cn
mailto:mubin@licp.cas.cn
mailto:aqwang@licp.cas.cn
https://doi.org/10.1007/978-3-030-64092-7_13#DOI


adsorbent after being regenerated and even increase significantly the additional value
for enriching the scattered metals and precious metals. Recently, more and more
studies have concerned the morphological control, homogeneous size, and tuned
porous structure of magnetic adsorbents except for the adsorption performance.
Hence, the emulsion template technique is applied to construct the magnetic adsor-
bents based on the advantages of facilely controlling the size distribution, crystal-
linity, and porous structure of magnetic materials.

Here, recent studies on the preparation of magnetic materials based on the
emulsion template are reviewed, including magnetic nanoparticles, magnetic micro-
spheres, and magnetic porous materials, and then the applications of the magnetic
adsorbents for water treatment are summarized and discussed. The major points
include the following aspects: (1) the emulsion template for preparation of the
magnetic materials presents several advantages such as the confined reaction in the
“microreactor,” controlled shape, particle size and distribution, high polymerization
degree, high productivity, low reaction temperature, and sufficient and tuned porous
structure. (2) The obtained magnetic adsorbents exhibit excellent adsorption perfor-
mance to the various pollutants, including heavy metals, dyes, and other organic
contaminants, as well as the oil-water separation. It is expected that this review could
be regarded as an important reference for the design and fabrication of novel
adsorbents.

Keywords Emulsion template · Adsorption · Magnetic · Heavy metals · Organic
pollutants · Imprinted polymer · Emulsion polymerization · Spinel ferrites · Porous
materials · Nanoparticle

13.1 Introduction

Adsorption technology has been widely studied and used to remove the coexisting
water contaminants in practical applications, due to its low cost and wide suitability.
Especially, the adsorbents with recyclability always attract much attention in prac-
tical, which not only decreases the risk of secondary pollution (Rydin et al. 2000;
Yin et al. 2018) but also increases significantly the additional value (Xue et al. 2019;
Hashem et al. 2020). Generally, the strategies for designing the recycled adsorbents
involve the large volume (Dlamini et al. 2020; Ren et al. 2019) and incorporation of
magnetic particles (Yu et al. 2019). Compared with the former, the magnetic
adsorbents have got more and more concerns, due to the diversified design, flexible
operation, and excellent separating effect (Hua et al. 2012).

Magnetite (Fe3O4) and maghemite (γ-Fe2O3) are the most popular and widely
used magnetic materials and could be directly used as adsorbents to eliminate
various pollutants (Patel et al. 2019; Tsedenbal et al. 2020; Liu et al. 2021).
However, the unavoidable problems are generally encountered, including magne-
tism loss and decreased adsorption performance, which might be related to the
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oxidization or decomposition of the naked magnetic particles in water (Zhu et al.
2013). Hence, most of the magnetic adsorbents are fabricated by incorporating
Fe3O4 or γ-Fe2O3 into the adsorbent matrix (Ji et al. 2020; Fahimirad et al. 2018;
Dehghani et al. 2021; Jung et al. 2019; Nuryono et al. 2020; Maleki et al. 2019; Tang
et al. 2019a; Huang et al. 2020). Although magnetic adsorbents prepared by this
strategy exhibit better adsorption performance and higher stability against acid or
alkaline, their dispersibility and morphologies are ignored, which actually have a
significant effect on the adsorption application. For example, nano-adsorbents gen-
erally displayed excellent adsorption performance due to the large specific surface
area and the amount of active sites. But agglomeration, which could reduce the
adsorption capacity, is still an important problem in large-scale applications. In
addition, since many adsorbents possess sufficient adsorption sites, the sites located
in the adsorbents interior usually fail to play role in the removal of pollutants. What
is important is the recycling of the adsorbent is difficult in most of actual situation,
and the risk of secondary pollution still exists. Therefore, the research to increase the
dispersity of nano-adsorbent and realize the sufficient utilization of the adsorption
sites has become the new hotspot.

Among the various strategies, the emulsion template is regarded as one of the
classical and effective pathways for the preparation of particles with homogeneous
size, controlled shape, or regular pore structure (Weng et al. 2020; Mokadem et al.
2020). With the development of the emulsion technique, novel hybrid materials are
designed and prepared using emulsion template, and it indicated three attractive
traits compared with other methods. First, the materials could be shaped with various
morphologies, including spherical, hollow, and porous (Wang et al. 2020a, b;
Stubenrauch et al. 2018; Thompson et al. 2019). Second, the morphologies of
novel materials are tuned conveniently by changing the emulsion factors. Last but
not least, the obtained materials will be endowed with some new function after
incorporation of specific particles, such as photocatalytic or magnetic property
derived from TiO2 or Fe3O4 (Li et al. 2014a, b).

In this chapter, we review the studies related to the preparation of magnetic
nanoparticle, magnetic microsphere, and magnetic porous material from the emul-
sion template and the application in water treatment (Fig. 13.1). It is expected that
this review will be regarded as an important reference for the design and fabrication
of other novel magnetic adsorbents.

13.2 Preparation of Magnetic Materials from Emulsion
Template

13.2.1 Magnetic Nanoparticles

Magnetic particles have been widely applied in various fields, such as soil remedi-
ation, mineral processing industry, water purification plant, and so on (Anjali et al.
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2019; Alhadidi et al. 2021; Li et al. 2021), and can be synthesized from many
strategies, including coprecipitation (Aylar et al. 2020; Kavitha and Kurian 2020),
thermal decomposition (Jesus et al. 2020), solvothermal (Fotukian et al. 2020), and
microemulsion (Yousuf et al. 2019) (Table 13.1). Among these approaches,
coprecipitation is most widely used, due to the product exhibited excellent
dispersibility in water and convenient production process. And the size, shape, and
magnetic property are affected by various parameters, including the type of ferric
salts, the ratio of Fe2+ to Fe3+, temperature, pH, etc. Even so, coprecipitation has
several defects, including the large size and broad size distribution, which derived
from the particles nucleation and subsequent growth up (Chen et al. 2016). In
comparison, the magnetic nanoparticles prepared from the thermal decomposition
at the presence of various stabilizing surfactants have monodisperse nanocrystals
(Wu et al. 2008), while this process also has obvious drawbacks, including the
complicated preparation process and expensive/toxic raw materials used (Xiao et al.
2016). Moreover, the obtained particles are hydrophobic and present a weak
dispersibility in water. Solvothermal and hydrothermal techniques are good at
preparing monodisperse magnetic particles with the controllable shape and narrow
size distribution, but it is still limited in article due to the long synthetic time and high
pressure.

Compared with other methods, the emulsion template, especially the
microemulsion, exhibits better superiority in the preparation of magnetic nanoparti-
cle. Because the reaction is limited in the “microreactor,” the size, shape, and
uniformity of particles could be controlled effectively. The general method is to
mix two types of microemulsions, containing a salt or a complex of metal and a

Fig. 13.1 The magnetic
adsorbent prepared from the
emulsion template
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precipitating agent, respectively. Then the droplets take place collision and coales-
cence, and the magnetic nanoparticles nucleate and grow in the new droplets
(Fig. 13.2).

For the fabrication and regulation of the morphology of magnetic nanoparticles,
Pileni et al. conducted many pioneering works via emulsion template, including
CoFe2O4 (Moumen et al. 1995a, b; Moumen and Pileni 1996a, b), Fe3O4 (Feltin and
Pileni 1997), and cobalt-zinc ferrite magnetic nanoparticles (Hochepied and Pileni
2000). The size of the obtained magnetic particle could be adjusted in 2–11.6 nm.
Soon afterwards, the magnetic spinel ferrites (SFs) prepared from the microemulsion
become one of the hotspots following the relevant research of Pileni et al. SFs are the
metal oxides which with the spinel structure, and the chemical constitution can be
marked as AB2O4, where A and B represented various metal cations situated at
tetrahedral (A site) and octahedral (B site), respectively. SFs can be classified as
normal, inverse, and mixed based on the distribution of cations in tetrahedral and
octahedral sites (Reddy and Yun 2016). The normal spinel includes ZnFe2O4, while
CdFe2O4, Fe[MFe]O4, MgFe2O4, NiFe2O4, CoFe2O4, and CuFe2O4 belong to the
inverse spinel (Fröhlich et al. 2019; Masunga et al. 2019). The spinel with mixed
structures is relatively rare, and MnFe2O4 is a typical example.

SFs could be synthesized by different methods, like calcination of the precursor
(Popkov et al. 2020), sol-gel (Batoo and El-sadek 2013), hydrothermal (Ghahfarokhi
and Shobegar 2020), ceramic method (Hilczer et al. 2016), coprecipitation (Ghone
et al. 2018), and so on. However, the size of most SFs prepared from these methods
is large and uncontrolled. In comparison, emulsion template is in favor of controlling

Table 13.1 Comparison of the synthesis methods of iron oxide magnetic particles (Pang et al.
2016)

Methods Reaction condition
Characteristic of the obtained
products

Coprecipitation Temperature: 20–90 �C Shape control: Not good

Duration: Minutes Size distribution: Broad

Solvent: Water Crystallinity: Poor polydispersity

Magnetization value: 20–80 emu/g

Thermal
decomposition

Temperature: 100–320 �C Shape control: Very good

Duration: Hours–days Size distribution: Very narrow

Solvent: Organic compound Crystallinity: High monodispersity

Magnetization value: Up to
91 emu/g

Solvothermal Temperature: 140–260 �C Shape control: Good

Duration: Hours Size distribution: Narrow broad

Solvent: Organic solvent or
polyglycol

Crystallinity: High monodispersity

Magnetization value: Up to
93 emu/g

Hydrothermal Temperature: 150–220 �C Shape control: Very good

Solvent: Organic compound Shape control: Good

Magnetization value: Up to
113 emu/g
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the size, morphology, shape and/or geometry, surface area, and homogeneity of
magnetic particles (Ghone et al. 2018; Wang et al. 2012; Baig et al. 2019; Yousuf
et al. 2019; Rafiq et al. 2020). Therefore, the microemulsion template is developed
for the preparation of SFs with the controllable structure. For example, a series of
Mg1 � xCaxNiyFe2 � yO4, Zn1 � xTbxFe2O4 were prepared via the microemulsion
template, and the crystallite size of the synthesized samples could be facilely
adjusted in the range of 15–45 nm.

A critical question is the interrelationship between the size of the obtained
particles and the microemulsion characters. Many researches revealed that there is
an almost linear correlation between them in few cases, but hardly find any corre-
lation in most studies. So a range of experimental findings can be summarized as
follows (Palmqvist 2003): (1) increasing reactant concentration will produce the
increased particle size; (2) if the concentration of one of the reactants increases far
beyond the other reactants, the particle size decreases; (3) the particle size might
increase with the increase in the size of microemulsion droplet. It showed that the
particles grown in the microemulsion droplet still have some complicated factors
without control.

13.2.2 The Magnetic Microspheres

The introduction of the magnetic particle into the composite is very popular and has
been widely reported every year (Fan et al. 2016; Xiao et al. 2016; Duan 2017). The
purpose of these works is divided into three types. The first is to protect the magnetic
particles from resisting the etching of acid or alkali, especially Fe3O4 and γ-Fe2O3

(Rott et al. 2018; Zhou et al. 2018). Fe3O4 and γ-Fe2O3 are the most widely used

Fig. 13.2 The mechanism for the formation of metal particles by the microemulsion approach.
(Reproduced with permission from Sanchez-Dominguez et al. 2012)

390 Y. Zhu et al.



magnetic nanoparticles, but their physical properties are susceptible to change under
different conditions. They are very unstable and easily transformed to other oxide
forms at low pH, which affected their magnetic properties. So the coating or
capsulation of magnetic particles is widely used in many studies (Lobato et al.
2019; Lobato et al. 2020). The second is to improve the dispersibility of magnetic
particles. The agglomeration and formation the large clusters of magnetic particles in
water is very common due to the hydrophobic surface (Lima and Feng 2012). The
last reason of coated particles surface is to realize the functionalization of the
nanoparticles by incorporation of various organic molecules or polymers
(Wu et al. 2008; Ma et al. 2020; Kim et al. 2020).

Actually, the microfluidics technology may be the best method for the preparation
of the material with near-perfect spherical shape (Zhang et al. 2018a, b; Kang et al.
2018). But the tedious process and the poor yield limit its large-scale production. In
addition, in situ polymerization, pendant drop method, and emulsion template are
developed for the preparation of the magnetic microsphere (Wang et al. 2010; Fang
et al. 2019), and emulsion template technique is superior due to the high polymer-
ization degree, high yield, and low reaction temperature.

Based on the preparation strategy, magnetic microsphere with four types of
morphologies can be obtained by the emulsion template (Gervald et al. 2010)
(Fig. 13.3): (a) the core-shell structure (magnetic particles as core and small mole-
cule or polymer as shell), (b) the magnetic particle is embedded into the polymer
matrix, (c) polymeric core with a surface layer of magnetic nanoparticles, and (d) the
polymer further coats onto the magnetic particle supported polymeric core. Among
them, the first three morphologies are very popular, but the reports involved the
fourth structure is relatively rare. For example, Wang et al. (Wang et al. 2020a, b)
fabricated triethylenetetramine-modified hollow Fe3O4/SiO2/chitosan magnetic
nanocomposite (Fe3O4/SiO2/CS-TETA) with high specific surface by the emulsion
polymerization. The carboxyl-functionalized polystyrene (PS) nanospheres were
formed firstly by copolymerization of styrene and acrylic acid via the emulsion
polymerization, and then the Fe3O4 nanoparticles were loaded onto. Later, the
coating of silica onto the PS/Fe3O4 nanospheres and the calcinations at 500�C
were carried out, and the hollow Fe3O4/SiO2/CS nanocomposites were obtained
finally after the chitosan modification (Fig. 13.4).

Fig. 13.3 Morphology types of magnetic polymer microspheres. (Reproduced with permission
from Gervald et al. 2010)
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Fig. 13.4 Schematic illustration of the synthesis of hollow Fe3O4/SiO2/CS-TETA nanocomposites
and their application in recycle removal of Cr(VI). (Reproduced with permission from Wang et al.
2020a, b)
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In order to achieve the coating, embedding, or supporting the magnetic particles,
polymerization techniques such as emulsion polymerization, microemulsion poly-
merization, miniemulsion polymerization, dispersion polymerization, etc. have been
used. Among them, emulsion polymerization is the most frequently adopted. How-
ever, due to the formation of the polymeric particles and oligomer occurs in the
micelles and the aqueous phase simultaneously, the morphology and size of the
obtained microspheres are very difficult to control via the emulsion polymerization.
Compared with the emulsion polymerization, the structure, morphology, and size of
microspheres could be efficiently regulated by microemulsion polymerization,
miniemulsion polymerization, and nanoemulsion polymerization (Solans et al.
2005) (Fig. 13.5). But the problem is, if the microemulsion polymerization and
miniemulsion polymerization are initiated with the free radical, partial magnetization
might be lost due to the oxidizing initiator fragments (Zheng et al. 2005). In fact, the
initiator types, concentrations of stabilizer, and the monomers dose also influence the

before polymerization after polymerizationa

b

c

Fig. 13.5 Schematic representation of heterophase polymerization processes: (a) emulsion poly-
merization, (b) nanoemulsion polymerization, and (c) microemulsion polymerization. (Reproduced
with permission from Solans et al. 2005)
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morphologies and properties of magnetic nanocomposite (Hu et al. 2011; Feuser
et al. 2015).

It is well known that the surfactants play a vital role in the microemulsion
polymerization, miniemulsion polymerization, and nanoemulsion polymerization
processes, which provide the droplets with colloidal stability against coalescence.
But the inevitable migration of surfactants at the interface significantly affects the
size and morphology of the obtained magnetic microspheres (Gharieh et al. 2019). In
order to avoid this issue, the emulsifier-free miniemulsion polymerization might be a
more wise choice (Zhang et al. 2016a, b). However, the stability of miniemulsion
would be affected with ionic strength in the aqueous; hence, the hydrophilic mono-
mer copolymerize with the hydrophobic monomer to keep the emulsion stability.

The dispersion of inorganic nanoparticles is another key problem to prepare
polymer/inorganic nanocomposites by emulsion polymerization. Due to the
nanoparticles have the high surface energy and easy to agglomerate together, the
miniemulsion polymerization should be integrated with ultrasonic induction (Qiu
et al. 2007). Compared with the conventional miniemulsion polymerization,
ultrasound-induced miniemulsion polymerization possesses several advantages,
such as no chemical initiators, low reaction temperatures, fast polymerization rate,
higher monomer conversion and molecular weight. For instance, Teo et al. (Teo et al.
2009) prepared a novel poly(n-butyl methacrylate) latex bead with strong magnetism
via one-pot method (Fig. 13.6). The O/W emulsion was prepared by dispersing the
Fe3O4 nanoparticles into n-butyl methacrylate first and integrated with the high
stirring and sonication under argon atmosphere. The polymerization reaction was
preceded via continuous sonication without using any initiator.

13.2.3 The Magnetic Porous Materials

The porous material could be prepared from many approaches, such as hydrothermal
synthesis (Kozyatnyk et al. 2019), freeze-drying (Anoshkin et al. 2018), porogenic
solvent (Jiang and Kim 2013), or sacrificial hard template (Estevez et al. 2017). The
as-prepared materials might have high porosity by these strategies, while the pore

Fig. 13.6 A schematic of the process for magnetite nanocomposite spheres preparation by the
sonochemically driven miniemulsion polymerization. (Reproduced with permission from Teo et al.
2009)
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structure is not easy to control and tune. In comparison, the soft templates including
the block copolymer template and colloidal template have been recognized to be
more effective to synthesize ordered and disordered porous matrices (Wright et al.
2017). Especially, the emulsion template method is recognized to be an effective and
versatile pathway for the preparation of polymeric materials with a well-defined
porous structure, which is known as “polyHIPEs” (Chen et al. 2017, Zhang et al.
2018a, b, Gui et al. 2019). A polyHIPE is usually formed after finishing the
polymerization reaction in the continuous phase of high internal phase emulsions
(HIPEs), which has the large internal phase volume exceeded 74%, and then
removing the dispersed phase. The interconnected pore will be formed as the thin
membranes between the adjacent droplets are broke (Fig. 13.7) (Tan et al. 2018).

There are several important differences between the emulsion template used for
the formation of the porous materials and the emulsion polymerization described
above. First, the internal phase contents of HIPEs are above 74%, but the internal
phase volume of emulsion polymerization and microencapsulation is significantly
smaller. Second, the polymerization of HIPEs occurs in the continuous phase, while
emulsion polymerization takes place in the dispersed phase. Moreover, HIPEs
typically generate the monolithic material, but microspheres are obtained through
the emulsion polymerization.

Both the surfactants and the amphiphilic solid particles are used to stabilize the
HIPEs, but different characters of the surfactants and the amphiphilic particles
generate different porous structures (Zhang et al. 2017). Generally speaking, surfac-
tants or surfactant-like molecules are used to stabilize the emulsion in the

Fig. 13.7 Influence of time-dependent droplet coalescence on the morphology of polyHIPEs.
(Reproduced with permission from Kovačič et al. 2007)
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micromolecules; the porous materials with interconnected porous structure are
obtained. On the contrary, the polymerization of the dispersed phase towards the
amphiphilic particle-stabilized HIPEs always results in the closed-cell polymers with
poor interconnectivity. Specifically, it has obvious positive effect of the stable
particles modified by the surfactants. When the particles and the surfactants are
synergistically stabilized in the emulsion, the stability of emulsion would be
improved significantly and thus polyHIPEs attain excellent homogeneity. Mean-
while, the surfactants lead to the formation of the interconnected porous structure
(Zheng et al. 2013).

At present, there are two approaches to obtain the magnetic porous materials from
the emulsion template. The first is to disperse directly the magnetic particles into the
emulsion continuous phase and then polymerization (Seeharaj et al. 2019). Due to
the aggregation of the magnetic particles in the continuous phase, more researches
are focused on the stabilization of the Pickering emulsion template with the magnetic
particles. The magnetic particles should be modified with the organic molecules
taken into account the inherent hydrophilicity of magnetic particles, such as surfac-
tant, oleic acid, and so on (Zhang et al. 2019a, b, c, d). For example, Zhu et al.
applied the amine-functionalized Fe3O4 nanoparticles (Fe3O4�NH2) to stabilize the
HIPEs and fabricated novel magnetic porous polymers with a surface area of
5.532 m2/g (Fig. 13.8). Our group also prepared the magnetic porous materials
with sufficient interconnected porous structure from the HIPEs, which was stabilized
with the amine-functionalized Fe3O4 (Zhu et al. 2016b; Lu et al. 2018a). Further-
more, we also developed another new type of magnetic porous adsorbent via the
magnetic yeast and chitosan synergistically stabilized Pickering medium internal
phase emulsions (Pickering MIPEs). As the droplet size and the stability of Pickering
MIPEs could be adjusted by changing the synergistic effect between magnetic yeast

Fig. 13.8 SEM images of the surface and inner morphology of the emulsion-templated beads with
different feeding amounts of FeNPs. (Reproduced with permission from Zhang et al. 2019a, b, c, d)
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and chitosan, the pore structure of the as-prepared magnetic adsorbent could be
flexibly tuned correspondingly (Lu et al. 2019a).

The shapes of the porous materials prepared from the emulsion template could be
monolithic, microspherical, and even rod-like (Gokmen et al. 2009). The porous
microspheres are formed easily by integrating the emulsion template with precipi-
tation polymerization, but the formation of rod-like porous material still needs the
microfluidic setup. We prepared the novel recyclable magnetic porous spheres by
dropping the Pickering HIPEs into the hot liquid paraffin. The grafting polymeriza-
tion reaction occurred between the hydroxypropyl cellulose and acrylic acid in the
continuous phase of the Pickering HIPEs when the emulsion droplet fall (Zhu et al.
2017a; Zhu et al. 2017b). The size of as-prepared magnetic porous spheres was about
1.5 mm, and the sufficient porous structure existed in the spheres. The magnetic
microsphere also attracts much attention due to the integrated advantages of
nanoparticles and porous materials. In general, porous microspheres are formed by
using the pore-foaming agent, and the strategy is classified as hard templates or soft
templates. The uniform porous structure could be created after removing solid
particles via etching in hard template, but the obvious flaws are the complicated
removal process of hard templates and the harsh conditions.

In comparison, the post-processing of soft templates is more convenient, as the
template removal could be achieved by a simple extraction or evaporation process.
The microfluidics technology and the double-emulsion technique are the most
representative soft template methods to prepare porous microspheres with
interconnected porous structure. But the microfluidics technology possesses the
gingerly preparation process, while the double-emulsion technique is simpler. In
general, the formation of double emulsions needs a two-step emulsification process
and also requires two kinds of surfactants to stabilize the oil-water (O/W) and water-
oil (W/O) interfaces, respectively. The preparation process is flexible and suitable for
the large-scale production (Fig. 13.9). Our group (Zhu et al. 2016c) prepared a series
of magnetic porous microspheres via (O1/W)/O2 double emulsion. The silane-
modified Fe3O4 particles and the surfactant of polyglycerol polyricinoleate were
used to stabilize the internal O1/W Pickering emulsion and the (O1/W)/O2 double
emulsion, respectively. The results indicated that the magnetic microspheres
presented a mean diameter of about 10 μm and interconnected porous structure.

13.3 The Application of the Magnetic Materials Prepared
by Emulsion Template in Water Treatment

13.3.1 Removal of Heavy Metal Ions

Heavy metal ions, such as Pb2+, Cr6+, Cu2+, Ni2+, Cd2+, Hg2+, etc., are extremely
noxious water pollutants and imposed serious side effects in living organisms. In
addition, the prolonged excessive intake of heavy metal ions could damage the
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kidney, liver, brain function, and nervous system (Wadhawan et al. 2020). Adsorp-
tion is recognized as an efficient method for the removal of heavy metals, and
magnetic adsorbents display distinct advantages including magnetic nanoparticles,
magnetic composites with the micro�/nanospherical structure, and magnetic porous
materials.

Magnetic Nanoparticles

Spinel ferrites (SFs) possess the superior chemical stability, enhanced magnetic
properties, large surface area, vast of active sites at the corners, edges, and steps,
so SFs applied in water treatment attract much attention and display enormous
potential. For example, the adsorption performance of MnFe2O4 to Cu2+ and Pb2+

was reported about 197 mg/g and 21.64 mg/g (Ren et al. 2012). The magnetic
MFe2O4 (M¼ Co, Ni, Cu, and Zn) nanoparticles had enhanced adsorption capacities
of 69.4 and 47.1 mg/g for Cd2+ and Pb2+, respectively (Yaqoob et al. 2019). The
MnFe2O4 and CoFe2O4 prepared by Asadi et al. had the understanding adsorption
capacities of 454.5 and 384.6 mg/g for Zn2+ (Asadi et al. 2020). The magnetic
Co0.6Fe2.4O4 microparticles with a uniform pore size of about 7.432 nm showed a
high specific surface area of 97.155 m2/g, and 80.32 mg/g of adsorption capacities

Fig. 13.9 SEM images of microspheres prepared from the double emulsions stabilized by a single
anionic surfactant. (Reproduced with permission from Li et al. 2014a, b)
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towards Pb2+ (Kaur et al. 2015). The SFs prepared from emulsion template also
present good adsorption performance for heavy metals. For instance, magnetic
Ni0.6Fe2.4O4 and Co0.6Fe2.4O4 prepared from microemulsion template by Duan
et al. had the maximum adsorption capacities of 189.04 mg/g and 80.32 mg/g for
U(VI) or Pb(II) (Duan et al. 2015; Duan et al. 2016).

It is difficult to correlate the adsorption performance and the preparation
method towards SFs, because the adsorption performances of SFs are affected
by many factors, e.g., size and shape, metal ion doping, calcination temperature,
and so on. Generally, SF nanoparticles with high surface area have superior
adsorption performance. For example, Hu et al. (Hu et al. 2007) compared
the adsorption capacities of MnFe2O4, MgFe2O4, ZnFe2O4, CuFe2O4, NiFe2O4,
and CoFe2O4 to Cr(VI). The adsorption capacities followed the order
MnFe2O4 > MgFe2O4 > ZnFe2O4 > CuFe2O4 > NiFe2O4 > CoFe2O4. The
MnFe2O4 nanoparticles with a high surface area of 180 m2/g showed shorter
equilibrium time compared with other SFs. Besides, the chemical doping and
calcination temperature also significantly affect the adsorption properties to heavy
metals. The chemical doping could tune the adsorption properties of MFe2O4 by
varying the particle sizes, morphologies, and functionalization, as well as variation
of the adsorption characteristics. Especially, the adsorption performance of SFs is
enhanced by introducing rare earth metal ions (Jacobo et al. 2004; Kuai et al. 2013).
It is attributed to the structural disorders of SFs, caused by the doping of rare earth
ions, is beneficial to increase the surface area and active binding sites. In addition,
the calcination temperature may change the particle size, morphology, and surface
area of SFs, resulting in the changed adsorption capacities (Ahalya et al. 2014).

The Magnetic Microsphere

Although the nano-adsorbents such as Fe3O4, SrFe2O4, and Ni0.6Fe2.4O4 are conve-
niently prepared and recycled from the water, the adsorption performance still needs
to enhance. Because the inherent physical and chemical property and the serious
aggregation of nano-magnetic particles in water. Thus, many organic small mole-
cules are used to modify the naked magnetic particles for increasing the adsorption
sites, including ascorbic acid, oxalic acid, and so on (Feng et al. 2012). However, the
increase in the adsorption performance is still limited. In addition, the organic
molecule might diffuse into the water and cause the secondary pollution. Hence,
introducing and immobilizing the magnetic particle into the matrix of polymeric
adsorbent become the main direction of the current research, and the magnetic
polymeric adsorbents with spherical structure are prepared and widely studied.

In this field, incorporation of the natural polymer into the adsorbent via the
inverse emulsion is employed to prepare the spherical adsorbents. The natural
polymers included carboxymethylcellulose and sodium alginate, especially chitosan
and its derivatives have been widely applied, due to low cost, nontoxic, renewable,
biodegradable, inherent adsorption performance, and high activity of the amino and
hydroxyl. The simplest method for the preparation of the magnetic adsorbent based
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on chitosan is to disperse the magnetic particle into chitosan solution via the inverse
emulsion and then cross-link with glutaraldehyde and epichlorohydrin or adjust the
solution pH from acid to alkaline. The obtained magnetic spherical adsorbent could
be used for the removal of many pollutants, including heavy metal, antibiotic, and
dyes (Lian et al. 2015). Despite the magnetic adsorbents based on the chitosan and
the magnetic particles are easy to prepare in mild condition, the obtained adsorbents
usually show the weak adsorption performance for pollutants. For instance, Podzus
et al. (Podzus et al. 2009) investigated the adsorption performance of magnetic
chitosan composite for Cu2+, the adsorption capacity was only about 19.4 mg/g.
Zhang et al. (Zhang et al. 2019a, b, c, d) immobilized the Aspergillus onto the
sodium tripolyphosphate crosslinked magnetic chitosan microspheres, the adsorp-
tion capacity of Cu2+ increased to 119.21 mg/g. It was attributed to the fact that the
most of amino group and hydroxyl group, which played a critical role in the
adsorption process participated in the cross-link reaction, especially for the chemical
cross-link by formaldehyde, glutaraldehyde, epichlorohydrin, tripolyphosphate, eth-
ylene glycol diglycidyl ether, and dimethyloldihydroxy ethylene urea. Hence, two
strategies are applied to increase the adsorption performance of this type of adsor-
bent, that are: using of chitosan derivatives to replace chitosan during preparation of
adsorbent, or modification the magnetic chitosan microspheres with others polymer.

For the first strategy, various chitosan derivatives have been used in the prepara-
tion of magnetic adsorbents, including quaternized chitosan, carboxylated chitosan,
N-acyl chitosan, and so on. For example, Song et al. (Song et al. 2017) replaced the
chitosan with derivatives of N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan
chloride (HTCC) to prepare the As(III) imprinted magnetic adsorbent in
microemulsions. The magnetic adsorbent showed excellent selectivity and recycla-
bility for As(III) over a wide pH range. Moreover, the adsorption efficiency still
maintained above 75% after 10 recycles. Tao et al. (Tao et al. 2016) modified
chitosan with glutamine and fabricated a magnetic composite microsphere in the
inverse emulsion for adsorbing Hg2+ and acid green 25 (AG25). The Hg2+ and AG25
all could be efficiently removed in weak acidic conditions, as the effective interac-
tions between Hg2+ and the carboxyl, amide groups, as well as the hydrogen bonding
between secondary amine of AG25 and carboxyl groups (Fig. 13.10).

Compared with the first strategy, the modification of magnetic chitosan micro-
spheres with other polymers or introducing the other inorganic/organic adsorbents is
more widely adopted. It is well known that the magnetic chitosan microspheres
could be modified easily based on the high activity of chitosan’s amino groups,
including grafting polymerization, esterification, and acylation. For instance, the
carboxylated chitosan magnetic spherical adsorbents with micro�/submicron size
were fabricated by Xu et al. via the microemulsion method for Pb2+ removal
(Xu et al. 2015). The chitosan magnetic microspheres with different sizes were
formed in the microemulsion and then modified with ethylene diamine tetra acetic
acid. The favorable recycle of both adsorbents displayed and 94% of elimination
capacity could be kept after fifth cycle. Sun et al. (Sun et al. 2016a) grafted the
quaternary ammonium groups onto the magnetic chitosan microspheres for removal
of the Cr6+ under a high acid environment. The adsorption capacity could be reached

400 Y. Zhu et al.



to 233.1 mg/g for Cr6+ at pH 2.5 and 25 �C, depending on the initial Cr6+ concen-
tration. Zheng et al. (Zheng et al. 2019) modified the magnetic chitosan microspheres
with poly(4-vinyl pyridine) and the poly([2-(methacryloxy)ethyl]
trimethylammonium chloride), the maximum adsorption capacities of two adsor-
bents for Cr6+ were 344.83 mg/g and 153.85 mg/g, respectively (Zheng et al. 2018).

Sun et al. (Sun et al. 2016b) adopted a large number of amino groups for
modification of magnetic chitosan microspheres to increase the adsorption perfor-
mance of Cr6+. The adsorbent of polyethylenimine-modified magnetic chitosan
microspheres (Fe3O4–SiO2–CTS-PEI) exhibited high acid resistance and magnetic
responsiveness, and the maximum adsorption capacity was 236.4 mg/g at 25�C,
which was approximately 2.5 times for the unmodified magnetic microspheres. Xiao
et al. (Xiao et al. 2017) introduced the amino groups and carboxyl groups into the
spherical magnetic chitosan adsorbent for adsorption of Cu2+. The Fe3O4

nanoparticles were supported onto the carboxyl-functionalized polystyrene particles
(PS) by integrating the emulsifier-free emulsion polymerization and the in situ
coprecipitation and then coated with cross-linked chitosan thin film. Finally, branch
polyethylenimine (PEI) was grafted on the surface of PS/Fe3O4/CS via Michael

Fig. 13.10 Chemical cross-linking reaction of chitosan modified with glutamine and brief descrip-
tion for available adsorption mechanism of CS-Gln-MCM for removal of AG25 and Hg2+.
(Reproduced with permission from Tao et al. 2016)
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addition reaction and an amidation reaction. The adsorption capacity to Cu2+ reached
204.6 mg/g within 15 min (Fig. 13.11). Except for the chemical modification with
polymers, some inorganic adsorbents also increased the adsorption capacity of the
spherical magnetic chitosan adsorbent. Wang et al. (Wang et al. 2019a, b) introduced
zinc oxide into the spherical magnetic chitosan adsorbent to eliminate the arsenic
from groundwater, a high As(V) adsorption capacity achieved with 63.69 mg/g.

Due to the high activity of acrylate monomer and the strong affinity of carboxyl
and acylamino for heavy metals, the spherical magnetic adsorbents prepared with
acrylate monomers of acrylic acid and acrylamide via the emulsion template,
especially the inverse emulsion is widely reported. The obtained adsorbents exhibit
excellent adsorption performance and favorable reusability. For example, beadlike
magnetic nanocomposite microgel adsorbent was prepared by polymerizing and
cross-linking the poly(acrylic acid) (PAA) onto the silane-modified Fe3O4 particles
to remove Pb2+ (Jiang et al. 2017) (Fig. 13.12). Due to the plentiful carboxyl groups,
high wettability, and high swelling of the Fe3O4/PAA microgel adsorbent, the
adsorption capacity towards the targeted metal ions of Pb2+ can be reached to
123.3 mg/g. Xie et al. (Xie et al. 2017) produced the magnetic microspherical
adsorbent by polymerization of acrylic acid and acrylamide onto the cassava residue
by an inverse emulsion method. The Cu(II) adsorption capacity of the adsorbents
reached 110.5 mg/g when the pH was 6.4. Wanna et al. (Wanna et al. 2016) reported
a magnetic adsorbent based on poly(methyl methacrylate) by the emulsion polymer-
ization technique for heavy metal removal. The polyethylene glycol bis(amine)

Fig. 13.11 Schematic illustration of the synthesis of PS/Fe3O4/CS-PEI composites and the photos
of TEM (a) and SEM (b) of PS, TEM (c) and SEM (d) of PS/Fe3O4, TEM (e) of PS/Fe3O4/CS, and
TEM (f) of PS/Fe3O4/CS-PEI. (Reproduced with permission from Xiao et al. 2017)
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(PEG-bis(amine)) was grafted onto the magnetic nanoparticles after being modified
with the poly(methyl methacrylate) by the reaction between the carboxyl groups
derived from the hydrolysis of PMMA and the amino groups of polyethylene glycol
bis(amine). The results indicated that the heavy metal uptake ratios of the adsorbents
were 0.08, 0.04, 0.03, and 0.01 mmol/g for Pb2+, Hg2+, Cu2+, and Co2+, respectively.
The cation radius of the heavy metal is the main effect factor for affecting the
removal efficiency.

The conductive polymers including polypyrrole (PPY), polyaniline (PANI),
polyindole (PIn), polythiophene (PTh), etc. have excellent adsorption performance
for heavy metals, as the remarkable chelating property derived from the abundant of
N-containing heterocyclic group. Due to the weak solubility but high activity of
pyrrole, indole, and thiophene, the conductive polymer adsorbent is directly pre-
pared from the O/W emulsion with mild condition. Chavez-Guajardo et al. coated

Fig. 13.11 (continued)
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the PPY and PANI onto the γ-Fe2O3 (PPY/γ-Fe2O3 and PANI/γ-Fe2O3) through the
emulsion polymerization at room temperature. The maximum adsorption capacities
of PPY/γ-Fe2O3 and PANI/γ-Fe2O3 were 209 and 196 mg/g and 171 and 107 mg/g
for Cr6+ and Cu2+ (Chávez-Guajardo et al. 2015). Ebrahimpour et al. (Ebrahimpour
et al. 2017) prepared three magnetic conductive polymers of PIn@Fe3O4,
PTh@Fe3O4, and PIn-co-PTh@Fe3O4 by modification of Fe3O4 nanoparticles
with polyindole (PIn), polythiophene (PTh), and poly(indole-co-thiophene) via in
situ emulsion polymerization. The magnetic conductive polymers were used to
pre-concentrate and determinate the aromatic amines in different real samples, and
the PIn-co-PTh@Fe3O4 nanocomposite sorbent displayed higher extraction
efficiency.

Fig. 13.12 Synthesis procedures of multi-functionalized Fe3O4 magnetite nanoparticles/
polyacrylic acid (MF-Fe3O4MNPs/PAA) composite microgels. (Reproduced with permission
from Jiang et al. 2017)
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The Magnetic Porous Material

The powder adsorbent presents excellent adsorption performance in the treatment of
wastewater, but the adsorption performance easily reduced as the inevitably aggra-
vation in water. Although the millimeter-sized spherical adsorbent overcomes this
shortcoming, most of the microspherical adsorbents have dense surface, and thus
ions and organic molecules are difficult to diffuse into the matrix of the adsorbent,
which limited the adsorption performance. Interestingly, the porous adsorbent could
be good at resolving this problem. It possesses stable physical-chemical property,
large specific surface area, and substantial exposed adsorption sites inside the
adsorbent and high porosity, which could reduce mass transfer resistance. Hence,
more and more studies are focused on the porous adsorbents for removal of pollut-
ants. Among various methods, emulsion template technology might be the more
effective approach for successful synthesis of porous materials with ordered porous
structure, especially HIPEs. Up to now, the porous materials prepared from the
HIPEs have been widely acted as the adsorbent for removal of various pollutants,
including metal ions, dyes, antibiotic, and so on (Han et al. 2015; Pan et al. 2016;
Zhang et al. 2019a, b, c, d). Due to the high porosity, the adsorbent prepared from
HIPEs presents excellent removal efficiency for heavy metal ions. For example,
Mert et al. used the humic acid-modified Fe3O4 (Fe3O4@HA) to stabilize HIPEs and
formed magnetic polyHIPEs using styrene/divinylbenzene as monomer. Magnetic
polyHIPEs were tested to remove Hg2+, and the maximum adsorption capacity of
20.44 mmol/g was achieved (Mert et al. 2013). Zhu et al. prepared magnetic porous
adsorbent of Pb2+ and Cd2+ from HIPEs, which was stabilized with amine-
functionalized Fe3O4. The surface of the magnetic porous adsorbent possessed
abundant benzene rings and was peculiarly prone to attach with the cation by
π-bond, and the removal capacities of Pb2+ and Cd2+ were 257 and 129 mg/g at
pH 5.5 (Zhu et al. 2018).

Our group devotes to study the porous adsorbent prepared from emulsion tem-
plate for elimination of heavy metal (Zhu et al. 2016a; Zhu et al. 2016d; Zhu et al.
2017b). And the macroporous magnetic adsorbent of chitosan-g-poly(acrylic acid)
was produced using the Fe3O4 nanoparticle-stabilized Pickering HIPE template. The
porous adsorbent showed the high adsorption capacities of 308.84 mg/g and
695.22 mg/g, as well as a fast adsorption rate of 40 min for Cd2+ and Pb2+,
respectively (Zhu et al. 2016b; Lu et al. 2018a). Moreover, the favorable adsorption
capacity of 88.95 mg/g for Sr2+ was reached by coating the magnetic porous
materials with polyaniline (PANI), which was better than most of the other adsor-
bents (Lu et al. 2018b).

However, high consumption of organic phase and the addition of large amounts
of surfactants restrict the application of conventional HIPE templates in the con-
struction of porous adsorbents. To address these problems, we replaced the synthetic
surfactant with the magnetic yeast (P-Yeast) to stabilize the HIPEs and developed a
series of magnetic porous adsorbents from the HIPE template (Lu et al. 2019a). The
stability of Pickering HIPEs and the corresponding porous structure could be
controlled with the interaction between P-Yeast and acrylic acid. The open-cell
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superporous adsorbent showed the fast and strong adsorption performance of
179.69 mg/g, 229.52 mg/g, and 166.81 mg/g for scattered metals of Rb+, Cs+, and
Sr2+ (Fig. 13.13). Furthermore, another novel magnetic porous adsorbent was
fabricated from the surfactant-free Pickering emulsion template stabilized with
magnetic yeast (MY) and chitosan (Lu et al. 2019b). The Pickering emulsion had
high stability at the middle phase emulsion (MIPEs) level, and the droplet size could
be adjusted easily by controlling the interaction between yeast and chitosan via the
pH varying. The microporous magnetic adsorbents with sufficient porous structure
also exhibited excellent adsorption performance for Rb+ and Sr2+, and the saturation
adsorption capacities of 168.98 and 151.91 mg/g for Rb+ and Sr2+ were achieved
within 25 or 10 min, respectively.

Despite the porous adsorbents with order porous structure are prepared from the
emulsion template, but the monolithic adsorbent is needed to smash before using in
some case, and the drastic process might destroy thoroughly the porous structure. So
how to integrate the advantages of the spherical adsorbent and the porous structure is
the research hotspot (Pan et al. 2015). The exciting finding is the porous spherical
adsorbent could be directly formed in the multiphase emulsion, including the water-
in-oil-in-water (W/O/W) emulsion or the oil-in-water-in-oil (O/W/O) emulsion. It

Fig. 13.13 CLSM images and the schematic diagram of P-Yeast-stabilized Pickering emulsions at
75% oil fraction. SEM images of the superporous adsorbent P-Yeast-PAA prepared with different
amounts of AA. (Reproduced with permission from Lu et al. 2019a)
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should be pointed out the emulsion integrated with the microfluidic technique could
obtain the porous spheres with perfect structure (Cao et al. 2016). For example, Cao
constructed a kind of three-dimensional magnetic porous multi-walled carbon nano-
tube bead via the multiphase emulsion using a modified microfluidic device. The
magnetic porous multi-walled carbon nanotube beads had good adsorption capabil-
ity to oils and organic solvents with six times recyclability. However, it is difficult to
realize the practical application of the porous microspherical adsorbent prepared by
the microfluidic technique due to the complicated preparation process, the high
production cost, and the toxic organic solvents.

Mudassir et al. (Mudassir et al. 2019) reported a magnetic microporous adsorbent
by loading the Fe3O4 nanoparticles onto the macroporous polymeric beads, which
prepared via the O/W/O emulsion, and finally modified with the poly(acrylic acid)
for removal of Pb(II) and crystal violet. The adsorption capacities of 290.69 and
80.20 mg/g for Pb(II) and crystal violet were derived from the sufficient porous
structure and abundant acrylic acid. The introduced Fe3O4 NPs not only endowed
the magnetic property to the microsphere but also improved the BET surface area.
Furthermore, the introduced Fe3O4 nanoparticles provided the auxiliary cross-
linking point to enhance the mechanical strength of the adsorbent (Fig. 13.14).

A magnetic spherical porous adsorbent was synthesized through the integrated
process of Pickering emulsion and precipitation polymerization (Zhu et al. 2016e;
Zhu et al. 2017a; Zhu et al. 2017b). The Rb+ and Cs+ could be effectively removed
within 15 and 30 min with the remarkable adsorption capacities of 310 and
448 mg/g, respectively (Fig. 13.15). In addition, the diameter of the spherical
adsorbent was reduced from millimeter-level to micron order by adopting the
O/W/O double emulsion. The microspherical adsorbent displayed the significant
adsorption performance boost, and the removal for Cu2+ and Pb2+ could be achieved
only within 3 min or 5 min, respectively, regardless of high (400 mg/L) or low
(100 mg/L) initial concentrations (Zhu et al. 2016d).

Fig. 13.14 Schematic view of the preparation of PAA (2.28–2.22 mm), PAA-Fe3O4 NC
(2.26–2.20 mm), and PAA-Fe3O4-PAA NC (2.26–2.21 mm) beads. (Reproduced with permission
from Mudassir et al. 2019)
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13.3.2 Removal of Organic Pollutant

Organic pollutants have become one of the most critical environmental issues
besides heavy metals in water, as their durability and toxicity in the environment.
The scope of organic pollutants is very broad, including endocrine-disrupting
chemicals, pharmaceuticals, detergents, organic dyes, personal care products, pesti-
cides, and common industrial organic chemicals (Lu and Astruc 2020; Routoula and
Patwardhan 2020). And the adsorption technique plays an important role in the
elimination of organic contaminants.

Magnetic Nanoparticles

The SFs used to adsorb organic pollutants are more common than in the removal of
heavy metals, because SFs not only adsorb heavy metals and cationic dyes, other
negatively charged organic pollutants also could be eliminated from aqueous solu-
tion (Konicki et al. 2013; Ding et al. 2015). For instance, the magnetic
nanocomposite of CaFe2O4 andMnFe2O4 was synthesized for the removal of methyl
orange, and the maximum capacity reached 344.83 mg/g. The Ni0.6Fe2.4O4

nanoparticles fabricated by emulsion template for adsorption of Congo red, and
92.04% of Congo red could be removed within 9 min (Zeng et al. 2014). The
adsorption mechanism of SFs to various cationic or anionic species included

Fig. 13.15 Synthetic route of the interconnected magnetic porous spheres for enrichment of Rb+

and Cs+. (Reproduced with permission from Zhu et al. 2017a)
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ion-exchange, electrostatic interactions, hydrogen bonding, and π-π interactions
surface complexation (Zhang et al. 2010; Wang et al. 2012; Zhou et al. 2014).
Particularly, the hydroxyl groups derived from M-OH and Fe-OH play an important
role. More importantly, the charge of the hydroxyl groups would change with the
variation of solution pH. Generally, SFs possess positive charge at low pH but will
convert to the negative charge in the alkaline environment, due to the deprotonation
of hydroxyl groups (Zafar et al. 2018) (Fig. 13.16). Except the surface charge, the
recent reports revealed that the microstructure, particle size, and surface morphol-
ogies of SFs also affect the adsorption performance (Ding et al. 2015).

Except for the adsorption mechanism, the role of SFs for the removal of the
organic pollutants also includes the catalytic degradation. SFs generate oxygen free
radicals in the presence of strong oxidizing agents. For example, the
peroxymonosulfate could be activated with the CoFe2O4 and then generated the
sulfate radicals for the degradation of organic pollutants, such as diclofenac (Deng
et al. 2013), methylene blue (Salami et al. 2019), and so on. In fact, many SFs
possess the photocatalytic performance under visible light, such as NiFe2O4,
CuFe2O4, and ZnFe2O4 (Mahmoodi 2013). Therefore, the integrated performances
of the adsorption and the catalysis contribute to enhancing the adsorption properties
of SFs to many pollutants.

The Magnetic Microsphere

The magnetic chitosan microspheres exhibit excellent adsorption performance for
many organic pollutants. The adsorption capacities of chitosan-coated Fe3O4 for
patulin and methylene blue (MB) were determined about 6.67 mg/g and 122 mg/g
(Luo et al. 2017; Liu et al. 2018). And the performance was affected by the amount
of the chitosan, magnetic particles, and cross-linking density. It was crucial to

Fig. 13.16 Role of pH on SrFe2O4 (SF) for tunable adsorption of anionic dye Eriochrome Black T
(EBT) and cationic dye methylene blue (MB). (Reproduced with permission from Zafar et al. 2018)
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prevent from the inevitable agglomeration of magnetic particles in chitosan solution
for the preparation of the magnetic chitosan adsorbent, which caused the heteroge-
neous magnetism to magnetic adsorbents. It confirms that this problem could be
solved completely by supporting the magnetic particles onto inorganic materials,
e.g., clay minerals and carbon nanotube. For example, the magnetic particles of
chitosan/organic rectorite-Fe3O4 were prepared for removal of methylene blue
(MB) and methyl orange (MO), and the maximum adsorption capacities for MB
and MO were 24.69 mg/g and 5.56 mg/g, respectively (Fig. 13.17). The Fe3O4 was
supported onto the rectorite first and then obtained the magnetic adsorbent of
chitosan/organic rectorite-Fe3O4 microspheres (CS/Mt-OREC microspheres) by dis-
persing the rectorite-Fe3O4 into chitosan solution and cross-linked with the formal-
dehyde and epichlorohydrin in reversed-phase microemulsion (Zeng et al. 2015). Ma
et al. prepared a chitosan/kaolin/Fe3O4 magnetic microsphere by supporting the
Fe3O4 onto kaolin and emulsion cross-linking (Ma et al. 2014). The obtained
microspheres showed stable adsorption performance for ciprofloxacin removal at
least four adsorption-desorption cycles. Except the increased dispersity after incor-
poration of inorganic materials, it is also in favor of enhancing the mechanical
strength of magnetic adsorbent, due to the additional cross-linking point of inorganic
materials in the polymeric structure.

Above studies are focused on preparation with the magnetic spherical adsorbent
based on the chitosan solution via the common inverse emulsion, which is stabilized

Fig. 13.17 The formation process of chitosan/organic rectorite-Fe3O4 microspheres. (Reproduced
with permission from Zeng et al. 2015)
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with surfactant. However, the residual surfactant might lead to the risk of secondary
pollution for water. Recently, Pickering emulsion has been studied widely, due to the
low usage levels and the high stability of the obtained emulsion, in which the
surfactant is replaced with particles for stabilizing emulsion (Murray 2019). In
addition, natural particles as the stabilized particle of Pickering emulsion become
the study trend in recent years. In fact, chitosan also could be served as the stabilized
particles for the formation of Pickering emulsion as its pH sensitivity (Li et al. 2019).
Ou et al. prepared an imprint polymeric adsorbent by using the Pickering emulsion
stabilized with chitosan nanoparticles (Fig. 13.18). Fe3O4 embedded into the matrix
of adsorbent by directly dispersing the hydrophobic Fe3O4 into the dispersed phase.
The erythromycin (ERY) adsorption capacity of magnetic adsorbent was about
52.32 μmol/g at 15 �C (Ou et al. 2015).

The functional groups of carboxyl, acylamino, amino, etc. have been widely
incorporated into the adsorbent for removal of organic pollutants. For instance, Dai
et al. (Dai et al. 2012) fabricated the Fe3O4/PAA microgel adsorbent by similar
method for selective adsorption of tetracycline. The Fe3O4/PAA microgels pos-
sessed the molecular recognition ability by adopting the molecular imprinting
technique, and the estimated adsorption capacity towards tetracycline was about
6.33 times higher than that of magnetic adsorbent without imprinting. Mao et al.
(Mao et al. 2016) synthesized a pH-sensitive magnetic molecularly imprinted poly-
mer via Pickering emulsion polymerization of methacrylic acid for selective adsorp-
tion of bifenthrin. The magnetic adsorbent displayed the outstanding adsorptive
selectivity for bifenthrin, and the adsorption-desorption cycle could be easily oper-
ated by changing the pH of the solution.

Resin is also applied to remove pollutants due to favorable mechanical strength
and abundant adsorption groups (Ming et al. 2015). The emulsion template is often
adopted during the synthesis process at the aim of obtaining monodisperse resin
microspheres. For example, iron-oxide nanoparticles were first coated with
γ-methacryloxypropyl-trimethoxysilane and then polymerized with styrene and
divinylbenzene in an O/W emulsion (Sehlleier et al. 2016). The MB adsorption
capacity of the obtained adsorbents was about 298 mg/g. Lu et al. (Lu et al. 2017)
fabricated magnetic hollow carbon microspheres (MHCMs) to remove rhodamine B
by alternation of surfactant-free emulsion polymerization and microwave-assistant
polycondensation (Fig. 13.19). The magnetic adsorbent with the multilayer
core-shell structure was obtained through the emulsion polymerization and
microwave-assistant hydrothermal method. The magnetic hollow carbon micro-
spheres had uniform morphologies and high surface area. And the removal effi-
ciency of rhodamine B (RB) reached to 99.5% and the adsorption capacity was
300 mg/g.

Wang et al. (Wang et al. 2019a, b) prepared a novel core-shell microspherical
resin adsorbent of Fe3O4@lignosulfonate/phenolic through the emulsion polymeri-
zation to adsorb dyes. The maximum capacity was 283.6mg/g in 40min, which was
much higher than those of most lignins and lignin-rich biomass. Zhu et al. (Zhu et al.
2016) synthesized magnetic resin polymer adsorbent with molecularly imprinted
structure by Pickering emulsion, stabilized with magnetic eggshells. The
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molecularly imprinted adsorbent with spherical and wrinkled morphology was
obtained in the dispersed phase by polymerization of the monomer of methyl
methacrylate. Adsorption experiments showed that the as-prepared molecularly
imprinted adsorbent could selectively adsorb erythromycin, but it presented a low
adsorption capacity of 47.393 mg/g, which might be due to the dense coating of the
magnetic eggshell.

Fig. 13.18 Formation of magnetic imprinted polymers (MIPs) from O/W Pickering emulsion
polymerization and the optical micrographs and SEM images of the Pickering emulsion and imprint
polymeric adsorbent. (Reproduced with permission from Ou et al. 2015)
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Fig. 13.19 Synthetic procedure of the MHCMs and the TEM images of the multilayer core-shell
structure. (Reproduced with permission from Lu et al. 2017)

13 Advanced Magnetic Adsorbents Prepared from Emulsion Template for Water. . . 413



Magnetic Porous Material

More and more researches on the use of porous adsorbents for removal of organic
pollutants are published in recent years (Wright et al. 2017; Kovačič et al. 2018).
The sufficient porous structure of magnetic porous materials is conductive to fast the
mass diffusion of organic pollutants in the matrix of adsorbent. In addition, the
functional groups sited in the interior of adsorbent could be adequately exposed,
resulting in the increased adsorption performance. For example, Du et al. (Du et al.
2019) fabricated Fe3O4@Cu3(btc)2 (Fe3O4@HKUST-1) magnetic particles and
embedded into polyHIPEs, which were synthesized by ethylamine, divinylbenzene,
and methyl methacrylate to form a polyHIPE composite by in situ polymerization.
The adsorption experiment revealed that polyHIPEs introduced the
Fe3O4@HKUST-1 displayed the higher removal efficiency for antibiotics of oxy-
tetracycline (OTC), tetracycline, duomycin, and chlortetracycline than the
unmodified polyHIPEs. Multiple actions including π-π interactions, hydrogen bond-
ing, and electrostatic interactions resulted in the high extraction ability of magnetic
polyHIPEs cake for antibiotics. Wu et al. (Wu et al. 2017) prepared a series of
magnetic porous adsorbents through Pickering HIPEs for the removal of
λ-cyhalothrin; the Fe3O4 nanoparticles coated with oleic acid (Fe3O4-OA) were
applied to stabilize the emulsion. Because the irreversible adsorption of Fe3O4-OA
at the oil-water interfaces, the throats decreased with the variation of Fe3O4-OA
content. The maximum λ-cyhalothrin adsorption capacity at 298 K was 404.4 μmol/g
(Fig. 13.20).

Azhar et al. (Azhar et al. 2019) obtained novel porous materials from the HIPE
template stabilized with humic acid-modified Fe3O4 (HA-Fe3O4) and cationic
fluorosurfactant (CFS). The HIPEs had increased stability than the emulsion only
stabilized with CFS. The porous structure of as-prepared polyHIPEs was easily
controlled by altering the concentrations of HA-Fe3O4 and/or CFS. The porous
materials showed the high capacity for the raised oil absorption and methylene
blue. More importantly, the foams adsorbent could be recycled by a simple centri-
fugation at least 10 cycles without obvious decrease in adsorption capacity. Zhu
et al. (Zhu et al. 2015) fabricated multihollow magnetic imprinted microspheres by
polymerization of Pickering double emulsion. The hydrophobic Fe3O4 nanoparticles

Fig. 13.20 SEM images of magnetic porous adsorbent with different amounts of Fe3O4 particles.
(Reproduced with permission from Wu et al. 2017)
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and hydrophilic cellulose nanocrystals were used to stabilize the W/O interface and
the O/W interface, respectively. The selective recognition capability of the
as-prepared microspheres for bifenthrin was proved to be more effective. Wang
et al. (Wang et al. 2018a, b) also reported a molecularly imprinted multicore rattle-
type microsphere for selective adsorption of bisphenol A through a facile Pickering
emulsion polymerization, using silica nanoparticles as the stabilizer. Our group
(Lu et al. 2018a) also prepared a novel magnetic porous adsorbent of chitosan-g-
poly(2-acrylamide-2-methylpropanesulfonic acid) (CTS-g-AMPS) by grafting
AMPS onto CTS in the Fe3O4-stabilized Pickering HIPEs; the as-prepared porous
adsorbents could be employed to eliminate tetracycline and chlortetracycline. The
adsorption capacities for tetracycline and chlortetracycline were 806.60 and
876.60 mg/g in a wide pH range of 3.0–11.0, respectively.

13.3.3 The Oil-Water Separation

Besides the soluble pollutants such as heavy metal ions, dyes, and antibiotics, many
insoluble or weakly soluble pollutants are also contained in the wastewater. These
pollutants may be originated from industrial oily wastewater or oil spill accidents.
These types of insoluble or weakly soluble pollutants are also one of the most serious
problems for the water environment (Zhang et al. 2019a, b, c, d). Generally, the
separation of oil/water mixture can be classified into three main categories: oil
removal, water removal, and controllable separation of oil and water. Among
them, oil removal is the most attractive as compared to the other two, because of
its simplicity and easiness.

Magnetic Nanoparticles

The magnetic nanoparticles could be served as the oil adsorbent, but the premise is
the magnetic nanoparticles should be coated with the organic compounds. The
functionalized magnetic nanoparticles have strong affinity for oil and thus could
be to adsorb oil effectively. Oleic acid is widely used, as oleic acid has a high affinity
to the Fe atoms of magnetic nanoparticles. Osama et al. (Osama et al. 2015)
functionalized the Fe3O4 with oleic acid in the miniemulsion and then to remove
oil. The result indicated that 95 wt. % of crude oil could be removed from the water
surface. Zhu et al. also modified the Fe3O4 with sodium oleate; the obtained Fe3O4/
sodium oleate showed excellent performance for the elimination of engine oil from
the water surface (Zhu et al. 2012).
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Magnetic Microsphere

Although the magnetic nanoparticles have the adsorption performance for oil after
the coated with the organic small molecules, the adsorption capacity is relatively
low, and thus the magnetic nanoparticles are incorporated into natural or synthetic
polymers, including starch, alginic acid, chitosan, and so on. Among of them, the
relevant studies of application chitosan to modify magnetic nanoparticles take the
most part. Lü et al. (Lü et al. 2017) fabricated a class of chitosan-grafted magnetic
nanoparticles by grafting the chitosan onto the silica-functionalized Fe3O4 via the
Schiff base reaction. The chitosan-grafted magnetic nanoparticles could efficiently
flocculate oil droplets at different pH conditions. The electrostatic attraction is
dominant in acidic and neutral condition, but hydrophobic interaction plays a vital
role in the alkaline condition.

The materials with superhydrophobic and superoleophilic properties could selec-
tively collect oils or organic chemicals from water, which provide a novel strategy
for the water-oil separation techniques (Chen et al. 2013). So many oil-adsorbed
adsorbents are prepared with the hydrophobic monomer. For instance, Fe3O4/PS
microspheres prepared through emulsion polymerization exhibited the fast rate for
adsorption oil and the best oil absorbency, which was up to 2.492 times of their
weight (Yu et al. 2015a, b). Chen also used the Fe3O4/PS microsphere to adsorb
lubricating oil, and the adsorption amount was three times as the particles’ weight
(Chen et al. 2013). Another example involved the microspheres for adsorption of oil
was prepared by coating the methyl methacrylate onto the Fe3O4/PS nanoparticles
through secondary polymerization. The high hydrophobicity of the microspheres
maintained in the wide pH range of 1–13. After 10 cycles, the nanoparticles still had
a high oil absorption capacity of 3.22 g/g (Gu et al. 2014).

Magnetic Porous Material

The limited oil storage capacity of traditional oil/water separation materials (e.g.,
active carbon, zeolites, and other adsorbents) might restrict their practical applica-
tions. In comparison, the monolithic porous materials such as aerogels, sponges, and
foams possessed sufficient and interconnected porous structure, which have the great
potential in oil absorption, as their features of high oil adsorption capacities and
easily recycling and reusing. The porous materials prepared from the HIPE template
could be served as excellent oil adsorbents (Zheng et al. 2013; Yu et al. 2015a, b;
Wang et al. 2018a, b; Zhang et al. 2019a, b, c, d).

Zhang et al. (Zhang et al. 2016a, b) prepared a poly(styrene-divinylbenzene)
foam by the Pickering HIPEs through a one-step reaction process. The materials with
different hierarchical pore structures were obtained by various Pickering emulsion
stabilized with different types of Fe3O4. The adsorption capacity of the monolithic
foam for chloroform was as high as 57.00 g/g. Zhou et al. prepared a hierarchical
porous resin for removal of oily substance through the HIPE template stabilized with
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phenolic resin precursor and Tween 80. And then the dopamine hydrochloride,
1-dodecanethiol, and Fe3O4 particles grafted onto the interface of porous resin via
adhesion of dopamine and Markel addition reaction. The as-synthesized hierarchical
porous resin possessed a typical hierarchical porous structure, and the porous
structure could be adjusted by varying the emulsion factors. The oil adsorption
rate and the oil retention rate for toluene were 11.765 g/g and 86.43%, respectively
(Zhou et al. 2019).

Zhang et al. employed the Span 20 together with Fe3O4 to synergistically stabilize
styrene-based HIPEs and produced magnetic solid foam for removal of oil. The
interconnected porous structure was constructed by varying the surfactant content,
the amount of Fe3O4 particles, and other emulsion factors. The resulting magnetic
solid foam exhibited excellent thermal stability. The oil adsorption capacity of the
solid foam was 16 times its own mass even after 10 cycles of oil/water separation
(Fig. 13.21) (Zhang et al. 2017).

Fig. 13.21 Removal of diesel from the water by the magnetic polystyrene foam. (Reproduced with
permission from Zhang et al. 2017)
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13.4 Conclusions and Future Prospects

Magnetic adsorbents prepared from emulsion template have been attracting much
attention in recent years. The magnetic materials prepared by emulsion template for
water treatment are reviewed, including the magnetic nano-adsorbent, the spherical
adsorbent, and the magnetic porous adsorbent. Magnetic nano-adsorbents of spinel
ferrite exhibit high stability towards acid and excellent removal performance for
various pollutants containing heavy metal and organic pollutant. Magnetic spherical
adsorbent might be the most wide studies due to the flexible preparation method,
various functionalization ways, and sufficient functional groups. Moreover, the
molecular imprinting technique could be conveniently integrated with the prepara-
tion process to realize the adsorption selectivity. By contrast, the porous magnetic
materials prepared from the HIPEs as adsorbent have increasingly been recognized
as one of the research hotspots, which exhibit high porosity and excellent adsorption
performance, tunable pore structure, pore size distribution, and mechanical strength.
Although magnetic adsorbents prepared from the emulsion template present many
advantages, some drawbacks still need to be solved.

First, the preparation process of magnetic adsorbent needs a large of organic
phase. Although magnetic nanoparticles, magnetic microspheres, or magnetic
porous materials prepared from the emulsion template display excellent adsorption
performance in water treatment, it is unavoidable to consume highly the organic
solvent and surfactant. Because the organic solvent contained much metal salt,
residual monomer, cross-link, surfactant, and oligomer after being used, the attempt
to cyclic utilization of organic solvent is not found in the relative studies. However, it
might be the most important issue for realizing the practical application of magnetic
adsorbent prepared from the emulsion template. In order to resolve this problem, the
emulsion template is developed for the preparation of porous material by decreasing
progressively the organic phase from 75% to 50%, even to 25% (Fresco-Cala and
Cárdenas 2019; Kavousi and Nikfarjam 2019). Furthermore, the environmental
harm of the toxic organic solvents could be alleviated by replacing with the edible
oils, such as canola oil, sunflower oil, and so on (Zhu et al. 2020). More importantly,
many researchers have focused on the preparation of porous materials from the
water-based foam (Fig. 13.22) (Cervin et al. 2013; Huang et al. 2018). The water-
based foam without any organic solvent, and the stability could be significantly
increased when stabilization the interface between air and liquid with amphiphilic
particles. Due to the green and easy preparation process, it must be the research
hotspot in future beyond all doubt. For magnetic nanoparticles and magnetic micro-
spheres, the ratio of water to oil has a significant effect on the size, crystallinity, and
morphology of the product, and thus the green synthesis still takes a lot of efforts.

The second issue is the adsorption selectivity to different pollutants. Although
many works involved the selective adsorption of organic pollutants by molecular
imprinting technique (Cyganowski, 2020; Liu et al. 2020), the recycled and refined
of valuable metal from the wastewater might be more meaningful. At present, a few
works report the selective adsorption of metal ions based on the magnetic spherical
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adsorbents, but the low adsorption efficiency limits the potential applications in
practice. Therefore, many efforts should be paid to design and construct the func-
tional magnetic adsorbents with excellent adsorption selectivity for rare and precious
metals.

Last but not least, the weak reusability of most of the reported magnetic adsor-
bents should be resolved. The separation and reuse are the most important advan-
tages of magnetic adsorbents, and there are many approaches to realize their cyclic
utilization. The most common regeneration of the spent adsorbents is using the
organic solvent (methyl alcohol, ethyl alcohol, etc.), acid (hydrochloric acid, sulfuric
acid, etc.), or alkaline (sodium hydroxide, potassium hydroxide, etc.) (Ye et al. 2020;
Zhao et al. 2020). Despite the adsorbents display excellent desorption and reusability
under the evaluation condition, but it is urgent to explore the feasible and green
approach to prevent from the secondary pollution, which derived from the desorbing
agents, regenerating agents, and the desorbed pollutants from the spent adsorbents.
This problem might be not important for the recycle and enrichment of the value
metal ions, but it is crucial for adsorption of organic pollutants. In order to actually
realize the recycle of the spent magnetic adsorbents, the carbonization technique
might be a promising strategy for the regeneration of the spent adsorbent after
adsorption organic pollutants.

Recently, the carbonaceous adsorbents have been applied in water treatment
(Xiao et al. 2018; Dai et al. 2020). Because it exhibits excellent adsorption perfor-
mance to organic or inorganic pollutants based on various adsorption mechanisms,
including H-bond, π-π stacking, polar interaction to organic pollutant and
coprecipitation, and electrostatic interaction to inorganic pollutants (Fig. 13.23).
Moreover, the carbonization strategy as the potential approach to realize the recycle
of adsorbent has been verified with our group’s work (Tang et al. 2016). The cost-
effective carbon/attapulgite composites were developed using waste hot-pot oil as a
carbon precursor through a facile one-step calcination process (Tang et al. 2017;

Fig. 13.22 SEM images of the porous structure template from water-based foam. (Reproduced
with permission from Huang et al. 2018)
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Tang et al. 2018a; Tang et al. 2018b). The removal ratios to methyl violet and
tetracycline still remained 77.6% and 60.2%, after ten times cycles of adsorption-
regeneration via a facile thermal regeneration strategy, respectively (Tang et al.
2019b). Furthermore, a series of carbon/attapulgite composite adsorbents were
successfully fabricated by a one-step in situ carbonization process using natural
starch as the carbon source to decolorate the crude palm oil (Tian et al. 2018). And
then the spent bleaching earth was further continuously transformed into carbon/
attapulgite composite adsorbents after cyclic adsorption-thermal regeneration for the
removal of dyes from wastewater. Therefore, the spent magnetic adsorbent after
adsorption organic pollutants could be repeatedly regenerated and finally to be
applied into soil for the remediation of heavy metal-polluted soil.
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